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Abstract

A semi-permanent gyre in the northern Red Sea, identified from observations
by Quadfasel and Baudner [1993; hereafter QB], also appears in the
NAVOCEANO sigma-coordinate model of the Red Sea. The model is forced by
real-time atmospheric fields as estimated by NORAPS and NOGAPS products.
Over the model period of mid-1993 to late 1994, the gyre was found

to be remarkably persistent in structure and transport, and similar

to the observed gyres, measured in the period 1983 to 1987. Transport
associated with the gyre in the top 100m is about 2 Sv, in good agreement
with the estimates of QB. Over the top 300m, the depth extent of the

gyre, the recirculating transport is 4 Sv. Circulation in the gyre is
strongest in summer, and weakest in winter. The model gyre appears to
migrate northward of 23 N in fall and winter, by about its radius distance.
The observational gyre may have the same behavior, but if so, it is not
well-resolved by the transects available. The migration suggests

that the gyre responds to time-dependent atmospheric forcing as well

as to the local bathymetry.

1. Introduction

This is a preliminary report on work in progress, in which the detailed
circulation patterns of the Red Sea are examined both from observations

and from the real-time NAVOCEANO sigma-coordinate model of the Red

Sea. The work is focused on identifying the relative contributions to

the observed variance of wind and thermohaline forcing. In this

report, we compare the model and observational evidence for a semi-permanent
gyre in the northern Red Sea, near 23 N. Because the Red Sea is

narrow (200km wide by 2000 km long) and has strong thermochaline forcing
much of the focus of past research has been on the resultant vertical
circulation of relatively fresh surface waters flowing into the sea from
the Gulf of Aden, and relatively saline water, transformed by extensive
evaporation, flowing out of the sea at depth. In comparison,

little attention has been given to the equally strong wind-driven component
of circulation in the Red Sea. As early as 1962, Neumann and McGill discussed
observational evidence for three-dimensional flow in the Red Sea, and
Maillard [1971] described a number of basin-width gyres in hydrographic

and GEK surveys. Quadfasel and Baudner [1993] used a recent series of
hydrographic and XBT surveys to identify gyres that are semi-permanent at severa
locations in the Red Sea. The most persistent of these is an anticyclonic
gyre located near 23 N, and was observed in all four seasons and all but
three of the 25 along-axis sections QB analyzed. We looked for the same
feature in the model results.




2. Analysis of the model gyre

The NAVOCEANO model is run in real-time, and is used as an operational
forecasting model. To do the analysis described below, we used the
nrestart" files generated by the model every 2 or 4 weeks, over the

period mid-1993 to late 1994. A total of 23 files were used (Table 1),

and we grouped them into the four seasons, with winter defined as

December, January and February, and the other seasons following

in sequence. There are between 4 and 8 realizations of model results

in each season. Variables that are included in the restart files are:
along- and across-sea velocities (v and u), potential temperature, salinity
and potential density. The grid of the model is set up to run .
approximately along and across the sea; v and u are the grid velocities--

we have not done any additional rotation to align them with principal

axes or more closely with the bathymetry. The restart files are loaded

into a Silicon Graphics program called Explorer, which we use to make

the vertical and horizontal cuts for each file. The cuts are then

analyzed using Matlab. For the following analysis, we examine the east-west
grid line centered at 23 N. We have not averaged the data in the along-axis
direction. :

3. The gyre at 23 N

The model gyre is most readily seen in the along-axis velocity v (Figure 1).
It is present in all four seasons, and the core extends to a depth of 200 m.
Maximum speeds are 0.5 m/s, and the strongest recirculation occurs in summer.
The transport per unit width, integrated over the top 100 m (Figure 2) and
top 300 m (Figure 3) illustrates the anticylonic circulation pattern quite
clearly. Note that in winter and to a lesser extent in fall there is

a larger cross-axis component of velocity (u), also shown

in the cross-section plots of u (Figure 4). We have interpreted

this as a migration of the gyre northwards in those seasons. Also shown

in Figures 2 and 3 is the average standard deviation in transport (per

unit width) over the section, to the depth of integration (100 or

300m). It appears as an arrow at the origin of each subplot. The

seasonal mean transports in the gyres are significantly larger than

the standard deviations. The recirculating and residual transports

(based on v), integrated across the section are given in Table 2.

To determine the recirculating transport, we integrated the northward

and southward velocities separately, and then took the average of the
absolute values of those transports. The residual is calculated as

the difference between the (absolute) northward and southward transports.
The recirculating transports are comparable to those estimated by QB

for the top 100 m, who found a range of about 0.4 to 2.8 Sv.

The model gyres have seasonal average transports of 1.0 to 2.7 Sv.
Transports over the top 300 m are nearly twice the 100m transports,

not surprising in view of the fact that the gyre extends to more

than 200 m depth.

Density and temperature structure in the model gyre is similar to
the observed gyres (Figures 5 and 6; compare with QB figures 2a and
2c). However, the model salinity does not reproduce the observed
field particularly well. In Figure 7, the salinity anomaly
(S-40)*100 is. plotted. The range in salinity is smaller than

that observed (see e.g. QB figure 2b), and the model salinity

is overall too high by about 0.5 psu. Fortuitously, this

doesn’t affect the gyre circulation very much, since the observed
T/S relationship is quite linear, and temperature and salinity are




reasonably well-correlated. QB used that fact to estimate gyre
transports from XBT temperature sections alone.

For each of the mean fields from the model we also calculated
standard deviations over the corresponding period, and those

are illustrated in the Appendix, along with black and white
versions of the mean field contour plots. In general, the

spatial variations of the mean fields are statistically significant,
in both the seasonal and the overall averages.

4. Summary and future work

The model appears to reproduce the semi-permanent gyre at 23 N
remarkably well. The model results further suggest that the

gyre may migrate by 100 km or so to the north in fall and winter,
a result that is not obvious from the observational analysis.

In the continuing work on this project, we expect to re-examine
the OB data to see if there is any clear observational evidence
for seasonal migration of the gyre, and also to look for possible
forcing mechanisms for the migration in the model winds.

Another analysis we have begun, but not yet completed, is to look

at along-axis sections in the same way that we did the 23N cross-section,
to see if we can identify the gyres found farther south in the

Red Sea by QB. Those gyres are less persistent, and occasionally
cyclonic, so that will be a somewhat more stringent test of the

model.

We also plan to examine the salinity structure in the model in
comparison to the observations more generally, and see if we

can make some recommendations on how to improve the model’s simulation
of the salinity field.

References

Maillard, C., 1971: Etude hydrologique et dynamique de la Mer Rouge
en hiver, Annls Inst. Oceanogr. Paris, 498(2), 113-140.

Neumann, A. C. and D. A. McGill, 1962: Circulation of the Red Sea in
summer, Deep-Sea Res. 8, 223-235.

Quadfasel, D. and H. Baudner, 1993: Gyre-scale circulation cells in the
Red Sea, Oceanologica Acta 16(3), 221-229.

List of Figures

Figure 1: Along-axis velocity (v) through a cross-section centered
at 23 N.

Figure 2: Vector transport per unit width, integrated from 100 m to
the surface. The average standard deviation in the transport is
shown by the arrow at the origin of each subplot. Up is northward
along the axis of the Red Sea.

Figure 3: As for Figure 2, except integrated over the top 300 m.

Figure 4: Across-axis velocity (u) through a model cross-section centered




at 23 N.

Figure 5: Potential density of a model cross-section centered at
23 N.

Figure 6: Potential temperature of a model cross-section centered at
23 N.

Figure 7: Salinity anomaly (S-40)*100 of a model cross-section centered
at 23 N.

Appendix figures:
Mean and standard deviations of: potential temperature, potential density,
salinity anomaly (S-40)*100, cross-axis and along-axis velocities (u and v).

Statistics are calculated over each season, and over all the restart files
(see Table 1 for the number of realizations in each season).

Table 1: Inventory of restart files used in the analysis
(Julian day and year)

Winter: 34093, 36093, 02094, 04094
Spring: 06094, 08094, 10094, 12094, 14094
Summer: 18093, 20093, 22093, 24093, 16094, 18094, 20094, 22094

Fall: 26093, 28093, 30093, 32093, 26094, 30094

Table 2: Transports (Sv) associated with the gyre at 23 N

Top 100 m Top 300 m
Season Recirculating Residual Recirculating Residual
transport transport transport transport
Winter 2.3 -0.3 4.0 -0.9
Spring 2.7 -0.4 4.6 -0.3
Summer 3.3 -0.2 5.7 -0.8
Fall 1.0 -0.3 3.9 -0.8

Overall 2.4 -0.02 4.4 -0.7
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